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Self-Avoiding Walks with Geometrical Constraints 

S. G. Whittington I 

We consider self-avoiding walks on a D-dimensional hypercubic lattice, con- 
fined to a slab geometry and confined to a half-space. We present a proof of the 
existence of a "connective constant" for the slab geometry and review some 
corresponding results for the half-space. We also discuss the way in which 
scaling arguments can be used to give stronger, but nonrigorous, results. 
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1. INTRODUCTION 

Self-avoiding walks confined to slabs, or attached (by a unit degree vertex) 
to a plane and confined to lie on one side of this plane, are of interest in 
problems such as polymer adsorption, steric stabilization of colloids and 
surface magnetism. In addition they are interesting as examples of systems 
in which geometrical constraints are applied so that the self-avoiding walk 
must also avoid some kind of barrier. 

The problem of the asymptotic behavior of the number (cn) of n-step 
self-avoiding walks on a lattice is well known. The few rigorous results 
which are available make use of the theory of functional inequalities (1) and 
the strongest result (2) is that there exists a constant, k, such that 

c n = exp[ nk + O(n 1/2) ] (1.1) 

This result is weak, in that it is widely believed that 

e. = exp[ nk + O(logn)] (1.2) 

In Section 2 we prove the existence of the limit 

lim n- l loge , , (L )  = k ( L )  (1.3) 
n---> ~ 
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where c,(L) is the number of self-avoiding walks confined to a slab of 
L + 1 ( D -  1)-dimensional hyperplanes of a D-dimensional hypercubic 
lattice, and in Section 3 we discuss the predictions about the behavior of 
k (L )  and related quantities which can be obtained from heuristic scaling 
arguments. In Section 4 we discuss some corresponding rigorous results for 
walks in a half-space and describe predictions about critical exponents 
which follow from considering the self-avoiding walk problem as the 
zero-spin-component limit of a magnetic problem. 

2. SELF-AVOIDING WALKS CONFINED TO A SLAB 

We consider a hypercubic lattice whose lattice points are the integer 
points in R D, z = ( x , . . . ,  y). An n-step self-avoiding walk is a sequence of 
distinct vertices w -- (z 0, z 1 . . . . .  z, } such that z i and zi+l differ by unity in 
exactly one of their coordinates. We shall be concerned with the subset of 
self-avoiding walks which satisfy the additional constraint 

O<<.x~<<.L, i = 0 , 1  . . . . .  n (2.1) 

so that the walk is confined to (L + 1) "layers" of the hypercubic lattice. 
Let Cn(L,A ) be the set of n-step self-avoiding walks, subject to (2.1), with 
z 0 = A, and let cn(L,A) be the cardinality of C,(L,A).  Although cn(L,A ) 
will depend upon the x coordinate of A it will be independent of the 
remaining coordinates so we can write cn (L ,A)=  c,(L,  xo). Summing over 
all possible values of x 0, we obtain 

L 

c , (L)  = ~ c , (L,  xo) (2.2) 
x 0 = 0  

which is the number of self-avoiding walks, subject to (2.1), per site of the 
(D - 1)-dimensional hypercubic lattice. We shall prove that 

lim n- l logcn(L)  = k ( L )  (2.3) 

exists for all L. 
In order to do this we consider a subset of Cn(L, A) for which it is easy 

to prove the existence of the corresponding limit, and then show that the 
existence of this limit implies (2.3). 

Let C*,(L,A) be the subset of C,(L,A) such that 

Y0 < Y~ < Yn, i = 0, 1, 2 . . . . .  n (2.4) 

and let B, (L,A)  be the subset of C*~(L,A) such that 

X 0 = X n = 0 (2.5) 

and 

Yo < Yi, i = 1, 2 . . . . .  n (2.6) 
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Clearly the cardinality of C*.(L, A) depends only on the x coordinate of A 
and we write the cardinality as c*.(L, xo). The cardinality of B . (L ,A)  is 
independent of A (since x 0 = 0 by definition) and we write the cardinality 
as b . (L) .  

Consider a member  of B . (L ,A)  whose end point is A'. If  we now 
consider a member  of Bm(L,A'  ) and concatenate these two walks, the 
resulting walk is a member  of Bn+m(L,A ). However, not all members  of 
B.+m(L, A) are obtained by this construction so that 

b,,(L)bm(L ) < bn+m(t ) (2.7) 

and b~(L) is a supermultiplicative function of n. Moreover, b,(L) t/~ is 
bounded above [since b,(L) < (2D)~]. Hence, by a standard theorem on 
supermultiplicative functions, ~ ~) 

0 < lim n-qogb,,(L) = supn-llogb,(L) =-- k(L) < oo (2.8) 
n---) o~ n > 0  

We now consider the relationship between the sets C~*(L,A) and 
Bn(L, A). If we define 

L 

c*.(L) = c*.(L, x0) (2.9) 
Xo= 0 

then clearly 

b.(L) < c.*(L) (2.10) 

In addition any member  of C~*(L,A) can be converted to a member  of 
Bn+2L+4(L,A'), where A' is in the hyperplane x = 0. To do this L + 2 edges 
are added to each of the end points of the walk in C,*(L,A) as follows. 
Suppose that A has coordinates (x o . . . .  , Yo)- Add the edge (x o . . . . .  Yo) 
-(Xo,.-- ,yo-1),  followed by x o edges, ( X o , . . . , y o - 1 ) - ( x  o -  
1 , . . . , y o -  1) . . . . .  (1 . . . . .  Y o -  1 ) - ( 0  . . . . .  Y o -  1), and L + l - x  o 
edges, (0 . . . .  , Yo - 1) - (0 . . . .  , Yo - 2) . . . .  , (0 . . . . .  Yo - L - 1 + Xo) - 
( 0 , . . . ,  Yo - L - 2 + xo). Since Xo < L, L + 2 - x o/> 2. In a similar way, 
L + 2 edges are added to the other end point of the walk from C](L, A) so 
that the end point of the walk after the addition of these edges is 
( 0 , . . . , y n  + L + 2 -  xn). By this process each walk in C*~(L,A) is con- 
verted to a distinct walk in Bn+2L+4(L,A" ) and 

c*.(L) <<. b.+2L+4(L ) (2.11) 

Then from (2.8), (2.10), and (2.11) we have 

0 < lira n-lloge~(L) = k(L) < oo (2.12) 
n ~ o o  

To relate C.(L, A) to C*.(L, A) we make use of an unfolding transfor- 
mation considered by Hammersley and Welch. (2) For a particular walk in 
C . (L ,A)  let Ymin = minyi  and let Yma~ = maxyi -  Let p be the smallest 
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integer such that yp =Ymin and let q be the largest integer such that 
fq ---.Vma x. Now reflect the vertices i = 0, 1, 2 . . . .  , p - 1 i ny  = frnin and the 
vertices i = q  + 1, q + 2 . . . . .  n in y = Ymax" By repeated application of 
these reflections we eventually obtain, apart from the trivial translation, a 
walk in C*,(L, A). In general the same walk in C*~(L, A) can be produced 
from different members of C,(L,A) but Hammersley and Welch (z) have 
shown that there exists a constant (a) such that at most exp(an ~/2) different 
members of Cn(L,A ) can lead to the same member of C,*(L,A). Since 
C*,(L,A) is a subset of C,(L,A) we have 

c*,(L) <. G(L) <. c*,(L)exp(an '/2) (2.13) 

Then (2.12) and (2.13) imply that 

lim n-qogc,(L) = k(L) (2.14) 
n - - >  o ~  

It is clear that c,(L)< c,(L + 1), from which it follows that k(L) 
<<. k(L + 1), but the calcualtion of k(L) is, of course, extremely difficult. 
For the special case D = 2, Wall et al. (3) have shown that 

exp[k(1)]  =�89 +,~-)  (2.15) 

and 

exp[k(2)]  = 1 .914 . . .  (2.16) 

A related quantity of interest is the mean square length of a self- 
avoiding walk in a slab, (R~(L)>. Although there are no rigorous results on 
(R~(L)> for general D, Wall et al. (4"5) have shown that, for D = 2, 

(R2n(L)) = O(n 2) (2.17) 

which implies that the walk has one-dimensional behavior. The L- 
dependence is more difficult but Wall et al. (3) have shown that 

nlim (Rn2(1)> In 2= (3 + ~/5)/10 (2.18) 

and 

lira (R~(2))/n2= 0 . 3 8 9 . . .  (2.19) 
/~ ---)  OO 

for D = 2. There are no rigorous results on the L dependence of (R,2(L)> 
and no results analogous to (2.17) for D > 2. 

3. SCALING RESULTS 

If we are interested in the L dependence of k(L) and (R2(L)) then 
essentially nothing is known rigorously. However, Daoud and de Gennes (6) 
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have used scaling arguments to investigate these quantities. We describe 
some of their results below. 

We consider a characteristic length R,,(L), which might be (RZ(L)) 1/2. 
For L large, we expect Rn(L ) to be determined by the natural dimensions 
of the walk in the absence of the slab constraints, 

R,(L),..~n p, L >> n" (3.1) 

As L decreases there are two competing length scales, L and n ~, so we 
expect R,(L) to be modified by a function of the ratio of the length scales. 
If we assume that this function can be written as a power law we have 

R , ( L ) ~ n  ~ ( n " / L )  ~ (3.2) 

By analogy with the results of Wall et al. discussed in Section 2, we expect 
that 

R, (L )~ n  ~' for L<<n" (3.3) 

where 1,' is the appropriate exponent for the lower-dimensional situation. 
For (3.2) and (3.3) to be consistent, we require that 

q, = (u'/r) - 1 (3.4) 

For D = 3, using standard estimates of u and p' gives ~ = �88 so that, from 
(3.2) 

Rn~n3/4L- 1/4 (3.5) 

while for D = 2 we obtain 

Rn~n L -  1/3 (3.6) 

This latter result is in good agreement with series analysis work (7~ and 
Monte Carlo results. (8~ 

Similar arguments, (6) depending on an Ansatz analogous to (3.2), 
suggest that 

~:( L) - -L  - '/~ (3.7) 

This "entropic repulsion" is one contributor to the steric stabilization of 
colloidal dispersions by weakly absorbed polymer molecules. (9) Of course, 
for a random walk t, = �89 and (3.7) implies that k ( L ) ~ L  -2, which agrees 

nicely with the exact results on this system. 

4. SELF-AVOIDING WALKS IN A HALF-SPACE 

In this section we review some results on the problem of self-avoiding 
walk on a D-dimensional hypercubic lattice confined to a half-space 
defined by a (D - 1)-dimensional hyperplane containing either one or both 
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of its vertices of unit degree. That is, we consider the set of self-avoiding 
walks, C~ (1), with x i >, 0 V i  and z 0 = 0, and the subset C, (1,1) of C~ (l), with 
the additional constraint that x, = 0. We write c~ (1) and c~ (1'~) for the 
cardinalities of these sets. If Cn is the set of n-step self-avoiding walks with 
z 0 = 0, with cardinality c, then 

c, ('") < c~ ]) < c,, (4.1) 

The main rigorous result (10) on these quantities is that 

lim n-qogc~ ( l ' b=  lim n- l logc  (1) = lim n - q o g c , =  k (4.2) 
/1-->00 n --~ OO n --)" oo 

This follows quite readily from a result due to Hammersley ( l l) that the 
number (p,) of directed,  unroo ted  polygons, weakly embeddable in a lattice 
satisfies the equation 

s u p n - l l o g p , =  lim n - q o g p ~ =  lim n- l logc ,  (4.3) 
n > 0  n ---) oo n---> oo 

To establish (4.2) we need a relationship between p,  and c~ (1,l). Con- 
sider a particular n-step polygon with vertices A~, A z , . . . ,  A, and let the 
coordinates of Aj be (x j ,  . . . ,  y j) .  Define 

min xj (4.4) 
X m i n  = l < j < n  

and let q be the smallest value of j such that xj = Xmi n . Translate the 
polygon so that (Xq . . . . .  yq)  becomes (0 . . . .  , yq).  Then xj > 0 Vj. We now 
consider three cases: 

(i)  Xq_ 1 = Xq+ 1 ~--- 0 

(ii) Xq_ 1 = O, xq + 1 " ~  1 
(iii) Xq_ 1 = 1, Xq+l = 0, wherej  is interpreted modulo n 

No other possibilities exist. For cases (i) and (ii) delete the edge Aq_ ~ - Aq 
and for case (iii) delete the edge A q -  Aq+ 1. In each case the resulting 
graph is a member of C~()11 ) and this graph is uniquely determined by the 
polygon from which it is generated. Hence 

Pn+l < 4 l ' l )  (4.5) 

Because the structure of the hypercubic lattice p, g= 0 only for n even so 
that the above construction works for this case. Hence (4.5) has been 
proved for n odd. One can construct an analogous argument for n even 

~( 1,1)a Then (4.1), (4.3), and (4.5) imply (4.2). (showing that p~ < ~, + 2 J. 
If one is interested only in c, ( b, it is possible to prove the existence of 

the limit (in 4.2) and its equality to k without using Hammersley's result on 
polygons, but making use of an unfolding transformation, applying succes- 
sive reflections to only one end of the walk. 
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By arguments which are an extension of those used above, Ishinabe 
and Whittington (12) have shown that 

sup n - qog c~ 1,1) = lim n - llog c~ 1,1) (4.6) 
n>O n--~ oe 

For c~ 17, the direction from which the limit is approached has not been 
established rigorously. 

The subdominant asymptotic behavior has not been established rigor- 
ously but there is strong numerical evidence suggesting that 

c .  ~ n r -  I e nk (4.7) 
Cn ( I ) ~  n ' / l - l e n k  (4.8) 

c ( 1,1)~ n r,~- I e nk (4.9) 

The exponents Yl and "/11 appear in at least one theory of polymer 
adsorption (13) and in the N--->0 limit of the N-vector model of surface 
magnetism.(14) From (4.6) and (4.9) we obtain Yll ~< 1, and Middlemiss and 
Whittington (15) have shown that 

3'1 <�89 + 1) (4.10) 

The exact values of YI and Yll are certainly of interest, for instance as 
a test of surface scaling theory, (16) which predicts that 

23'1 = "/11 + Y + v (4.11) 

where v is the exponent characterizing the divergence of the length of a 
self-avoiding walk. 

5. DISCUSSION 

The two basic techniques which have been used to establish rigorously 
that limits analogous to (1.3) exist are (i) geomentrical arguments leading to 
concatenations, followed by results on the theory of super or submulti- 
plicative functions, (1,17,18) and (ii) "squeezing" the set of interest between 
two sets known to have the same limiting behavior. Essentially all the 
results on existence of limits for c o n f i n e d  self-avoiding walks (as well as 
graphs with other given topologies, (19) lattice animals, (20,21) etc.) have been 
obtained by variants of one of these approaches. 

It is much more difficult to obtain rigorous results on the subdominant 
asymptotic behavior. A rigorous proof of (1.2) would be a major step 
forward and would probably lead to the establishment of corresponding 
subdominant behavior for a variety of related problems. To obtain results 
on critical exponents characterizing the subdominant asymptotic behavior, 
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currently one is obliged to use nonrigorous arguments such as the scaling 
methods mentioned in Section 4. 
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